Weekly QuEST Discussion Topics and News, 9 Dec

December 8, 2016 Leave a comment

QuEST 9 Dec 2016:

This time of year we traditionally review all the topics from the year – in an attempt to capture the big lessons to incorporate them into the Kabrisky lecture – the first QuEST meeting of any calendar year (will be 6 jan 2017) is the Kabrisky memorial lecture where we capture the current answer to ‘what is quest?’ – in honor of our late esteemed colleague Prof Matthew Kabrisky.

But this year we also have the task before the end of the calendar year to capture the answers to the questions that would lead to a ‘funded’ effort (either inside or outside the government) to build a QuEST agent (a conscious computer).

  • I will be formulating the ‘pitch’ before the end of the year – the pitch has to answer:

–     What is it we suggest?

–     How will we do what we suggest?

–      Why is it we could do this now? 

–     Why we are the right people to do it – what in our approach that is new/different?

–     What will be the result – if successful what will be different? 

–     How long will it take and what will it cost? 

–     What are our mid-term and final exams that will tell us/others we are proceeding successfully?

On the second topic first – this week I will continue giving my current ‘what’ answer and a first cut at the how/why now answer for the QuEST pitch.  The ‘what’ answer is wrapped around the idea of making a conscious computer (one that is emotionally intelligent and can increase the emotional intelligence of its human partners) as that is the key to group intelligence.  Last week I attempted to capture the ‘what’/’how’ but focused on the QuEST agent having a dual process and thus generating emotional intelligence with respect to its subconscious calculations.  This week we will focus on how to make the QuEST agent have emotional intelligence with respect to the subconscious calculations of the human partner that is attempting to make higher quality decisions.

The ‘how’ last week was wrapped around generating a gist of the representation that the machine agent generates for example in deep learning agents in a given application area – the idea being that deep learning (in fact all big data approaches) extracts and memorizes at far too high a resolution to be able to robustly respond to irrelevant variations in the stimuli – therefore we posit that via unsupervised processing of that representation used to do the output classification we will generate ‘gists’.  The idea is to use the ‘gists’ of those representation vectors to provide a lower bit view of what is necessary to get an acceptable accuracy.  My idea for the How is that new ‘gists’ vocabulary ~ qualia can be used as a vocabulary for a simulation (either GANs or RL based) to complement the higher resolution current deep learning answers.  Then the challenge will be to appropriately blend the two.  An alternative to blending is to use the qualia in a single pass cognitive system but where the bottom up data evoked activations are replaced by some set of the ‘imagined’ qualia.

Let’s assume instead of just using the action / behavior of the human we take some text input (via speech or typed).  So to be clear the human consumes the output of the machine learning solution in some space like a recommender system.  The human now does something.  For example the human buys / watches / reads / or clicks to another option.  Most machine learning recommender systems use this action and attempt to find correlations in the actions and thus capture a model of user responses that can be used later.  Now instead of just monitoring what the human did in response to the recommendation we also gather some information about how they felt via analysis of the text (either typed or spoken to the system or of course if available any human state sensing means).  Now we have a set of words / measurements that we can use to extract a set of emotional states to use in a model of the human that can be used by the QuEST agent.

I look forward to the discussion on this view of the what and the how.  The why now part of the how is centered around the spectacular recent breakthroughs in deep learning.  There are many applications – anytime a human uses a recommendation from a computer and needs to understand that recommendation so it can be used appropriately AND the recommender can be improved by a better understanding of the how the human felt about the prior recommendations.

So that leads to some definable steps – what to do and how specifically to proceed and how much will it cost and how long will it take – we have those in hand now – been a great week!  Next week Scott and I will be discussing this in NY with potential collaborators.  More to come on that – but for now assume there will NOT be a QuEST meeting on the 16th of Dec.

On the second topic, reviewing the material we covered this calendar year that should be considered for inclusion into the Kabrisky lecture series, I will briefly remind everyone of the major topics we hit early this calendar year that maybe need to be included in our Kabrisky lecture.

In March we hit the dynamic memory networks of MetaMind:

http://www.nytimes.com/2016/03/07/technology/taking-baby-steps-toward-software-that-reasons-like-humans.html?_r=0

Taking Baby Steps Toward Software That Reasons Like Humans

Bits

By JOHN MARKOFF MARCH 6, 2016

Richard Socher, founder and chief executive of MetaMind, a start-up developing artificial intelligence software. Credit Jim Wilson/The New York Times

Richard Socher appeared nervous as he waited for his artificial intelligence program to answer a simple question: “Is the tennis player wearing a cap?”

The word “processing” lingered on his laptop’s display for what felt like an eternity. Then the program offered the answer a human might have given instantly: “Yes.”

Mr. Socher, who clenched his fist to celebrate his small victory, is the founder of one of a torrent of Silicon Valley start-ups intent on pushing variations of a new generation of pattern recognition software, which, when combined with increasingly vast sets of data, is revitalizing the field of artificial intelligence.

His company MetaMind, which is in crowded offices just off the Stanford University campus in Palo Alto, Calif., was founded in 2014 with $8 million in financial backing from Marc Benioff, chief executive of the business software company Salesforce, and the venture capitalist Vinod Khosla.

MetaMind is now focusing on one of the most daunting challenges facing A.I. software.Computers are already on their way to identifying objects in digital images or converting sounds uttered by human voices into natural language. But the field of artificial intelligence has largely stumbled in giving computers the ability to reason in ways that mimic human thought.

Now a variety of machine intelligence software approaches known as “deep learning” or “deep neural nets” are taking baby steps toward solving problems like a human.

On Sunday, MetaMind published a paper describing advances its researchers have made in creating software capable of answering questions about the contents of both textual documents and digital images.

The new research is intriguing because it indicates that steady progress is being made toward “conversational” agents that can interact with humans. The MetaMind results also underscore how far researchers have to go to match human capabilities.

Other groups have previously made progress on discrete problems, but generalized systems that approach human levels of understanding and reasoning have not been developed.

Five years ago, IBM’s Watson system demonstrated that it was possible to outperform humans on “Jeopardy!”

Last year, Microsoft developed a “chatbot” program known as Xiaoice (pronounced Shao-ice) that is designed to engage humans in extended conversation on a diverse set of general topics.

To add to Xiaoice’s ability to offer realistic replies, the company developed a huge library of human question-and-answer interactions mined from social media sites in China. This made it possible for the program to respond convincingly to typed questions or statements from users.

In 2014, computer scientists at Google, Stanford and other research groups made significant advances in what is described as “scene understanding,” the ability to understand and describe a scene or picture in natural language, by combining the output of different types of deep neural net programs.

These programs were trained on images that humans had previously described. The approach made it possible for the software to examine a new image and describe it with a natural-language sentence.

While even machine vision is not yet a solved problem, steady, if incremental, progress continues to be made by start-ups like Mr. Socher’s; giant technology companies such as Facebook, Microsoft and Google; and dozens of research groups.

In their recent paper, the MetaMind researchers argue that the company’s approach, known as a dynamic memory network, holds out the possibility of simultaneously processing inputs including sound, sight and text. ** fusion **

The design of MetaMind software is evidence that neural network software technologies are becoming more sophisticated, in this case by adding the ability both to remember a sequence of statements and to focus on portions of an image. For example, a question like “What is the pattern on the cat’s fur on its tail?” might yield the answer “stripes” and show that the program had focused only on the cat’s tail to arrive at its answer.

“Another step toward really understanding images is, are you actually able to answer questions that have a right or wrong answer?” Mr. Socher said.

MetaMind is using the technology for commercial applications like automated customer support, he said. For example, insurance companies have asked if the MetaMind technology could respond to an email with an attached photo — perhaps of damage to a car or other property — he said.

There are two papers that we will use for the technical detail:

Ask Me Anything: Dynamic Memory Networks
for Natural Language Processing:

  • Most tasks in natural language processing can be cast into question answering (QA) problems over language input.  ** way we cast QuEST  Query response**
  • We introduce the dynamic memory network (DMN), a unified neural network framework which processes input sequences and questions, forms semantic and episodic memories, and generates relevant answers.
  • The DMN can be trained end-to-end and obtains state of the art results on several types of tasks and datasets:
  • question answering (Facebook’s bAbI dataset),
  • sequence modeling for part of speech tagging (WSJ-PTB),
  • and text classification for sentiment analysis (Stanford Sentiment Treebank).
  • The model relies exclusively on trained word vector representations and requires no string matching or manually engineered features.

 

The second paper:

Dynamic Memory Networks for Visual and Textual Question Answering
Xiong, Merity, Socher – arXiv:1603.01417v1 [cs.NE] 4 Mar 2016

  • Neural network architectures with memory and attention mechanisms exhibit certain reasoning capabilities required for question answering.
  • One such architecture, the dynamic memory network (DMN), obtained high accuracy on a variety of language tasks.

–     However, it was not shown whether the architecture achieves strong results for question answering when supporting facts are not marked during training or whether it could be applied to other modalities such as images.

–     Based on an analysis of the DMN, we propose several improvements to its memory and input modules.

–     Together with these changes we introduce a novel input module for images in order to be able to answer visual questions.

–     Our new DMN+ model improves the state of the art on both the

  • Visual Question Answering dataset and
  • the bAbI-10k text question-answering dataset without supporting fact supervision.

 

 

The topic this week is a discussion about the unexpected query – specifically ‘zero-shot learning’.  We will use an article by Socher / Manning / Ng from NIPS 2013:

Zero-Shot Learning Through Cross-Modal Transfer
Richard Socher, Milind Ganjoo, Christopher D. Manning, Andrew Y. Ng

  • This work introduces a model that can recognize objects in images even if no training data is available for the object class.
  • The only necessary knowledge about unseen visual categories comes from unsupervised text corpora.

Related to question of the unexpected query – but unexpected with respect to the image classification system – not to the word / text processing system – so a sort of  transfer learning issue – transfer between systems

  • Unlike previous zero-shot learning models, which can only differentiate between unseen classes, our model can operate on a mixture of seen and unseen classes, simultaneously obtaining state of the art performance on classes with thousands of training images and reasonable performance on unseen classes.
  • This is achieved by seeing the distributions of words in texts as a semantic space for understanding what objects look like.
  • Our deep learning model does not require any manually defined semantic or visual features for either words or images.
  • Images are mapped to be close to semantic word vectors corresponding to their classes, and the resulting image embeddings can be used to distinguish whether an image is of a seen or unseen class.
  • We then use novelty detection methods to differentiate unseen classes from seen classes.
  • We demonstrate two novelty detection strategies;
  • the first gives high accuracy on unseen classes,
  • while the second is conservative in its prediction of novelty and keeps the seen classes’ accuracy high.

Then there was our diving into the generative / adversarial networks:

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS
Alec Radford & Luke Metz
indico Research
Boston, MA
falec,lukeg@indico.io
Soumith Chintala
Facebook AI Research

  • In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications.
  • Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning.
  • We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning.
  • Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair learns a hierarchy of representations from object parts to scenes in both the generator and discriminator.
  • Additionally, we use the learned features for novel tasks – demonstrating their applicability as general image representations.

So again the QuEST interest here is Imagine we use the generative model and use the data not just the weights to generate the data – that is imagine that our previous idea of a conscious system that is separate from the subconscious system is wrong – imagine one system – but with processes that populate the sensory BU paths being what we call conscious and subconscious –

Imagine that even as early as the visual cortex that much of the content is inferred and not measured by the visual sensing (eyes) – this seems to me to be testable – by electrode studies confirm/refute the idea that much of what is present even early in the visual chain of processing is inferred versus captured by the eyes – this could account for the 10:1 feedback versus feedforward connections –

Here is the implication – we take Bernard’s generative models – and have them generate additional information (competing with the bottom up sensory data for populating the agent’s world model) – and then the winning populated solution gets processed by a bottom up deep learning experienced based solution –

 

Note ‘blending’ is now only the competition of the top down imagined information and the bottom up sensory data – but the cognition is all in the bottom up processing of the resulting world model

 

In May we hit:

One topic I want to remind people – I’m extremely interested in applying QuEST ideas to social and medical issues – specifically what to do about inner city violence and how to do predictive intelligence (for predicting shock onset) – one article I will post for potential discussion is:

Am J Community Psychol (2009) 44:273–286

DOI 10.1007/s10464-009-9268-2

Researching a Local Heroin Market as a Complex Adaptive

System

Lee D. Hoffer • Georgiy Bobashev •

Robert J. Morris

Abstract This project applies agent-based modeling (ABM) techniques to better understand the operation, organization, and structure of a local heroin market. The simulation detailed was developed using data from an 18- month ethnographic case study. The original research, collected in Denver, CO during the 1990s, represents the historic account of users and dealers who operated in the Larimer area heroin market. Working together, the authors studied the behaviors of customers, private dealers, streetsellers, brokers, and the police, reflecting the core elements pertaining to how the market operated. After evaluating the logical consistency between the data and agent behaviors, simulations scaled-up interactions to observe their aggregated outcomes. While the concept and findings from this study remain experimental, these methods represent a novel way in which to understand illicit drug markets and the dynamic adaptations and outcomes they generate. Extensions of this research perspective, as well as its strengths and limitations, are discussed.

And also the work of our colleague Sandy V:

A Novel Machine Learning Classifier Based on a Qualia Modeling Agent (QMA)

 

This dissertation addresses a problem found in standard machine learning (ML) supervised classifiers, that the target variable, i.e., the variable a classifier predicts, has to be identified before training begins and cannot change during training and testing. This research develops a computational agent, which overcomes this problem.

 

The Qualia Modeling Agent (QMA) is modeled after two cognitive theories:

Stanovich’s tripartite framework, which proposes learning results from interactions between conscious and unconscious processes; and, the Integrated Information Theory (IIT) of Consciousness, which proposes that the fundamental structural elements of consciousness are qualia.

 

By modeling the informational relationships of qualia, the QMA allows for retaining and reasoning-over data sets in a non-ontological, non-hierarchical qualia space (QS). This novel computational approach supports concept drift, by allowing the target variable to change ad infinitum without re-training, resulting in a novel Transfer Learning (TL) methodology, while achieving classification accuracy comparable to or greater than benchmark classifiers. Additionally, the research produced a functioning

model of Stanovich’s framework, and a computationally tractable working solution for a representation of qualia, which when exposed to new examples, is able to match the causal structure and generate new inferences.

news-summary-36

Categories: Uncategorized

Weekly QuEST Discussion Topics and News, 2 Dec

December 1, 2016 Leave a comment

QuEST 2 Dec 2016:

Sorry it has been a while – we have a lot to do – this time of year we traditionally review all the topics from the year – in an attempt to capture the big lessons to incorporate them into the Kabrisky lecture – the first QuEST meeting of any calendar year (will be 6 jan 2017) is the Kabrisky memorial lecture where we capture the current answer to ‘what is quest?’ – in honor of our late esteemed colleague Prof Matthew Kabrisky.  But this year we also have the task before the end of the calendar year to capture the answers to the questions that would lead to a ‘funded’ effort (either inside or outside the government) to build a QuEST agent (a conscious computer).

  • I will be formulating the ‘pitch’ before the end of the year – the pitch has to answer:

–     What is it we suggest?

–     How will we do what we suggest?

–      Why is it we could do this now? 

–     Why we are the right people to do it – what in our approach that is new/different?

–     What will be the result – if successful what will be different? 

–     How long will it take and what will it cost? 

–     What are our mid-term and final exams that will tell us/others we are proceeding successfully?

Each (the pitch and reviewing the material we did during the calendar year 2016) individually is a daunting task in the short time left with the holidays approaching – but we will boldly go where we have never gone and will do both in the remaining weeks of the calendar year.

On the second topic first – this week I will give my current ‘what’ answer and a first cut at the how/why now answer for the QuEST pitch.  The ‘what’ answer is wrapped around the idea of making a conscious computer (one that is emotionally intelligent and can increase the emotional intelligence of its human partners) as that is the key to group intelligence.

The ‘how’ answer is wrapped around generating a gist of the representation that deep learning converges to in a given application area – the idea being that deep learning (in fact all big data approaches) extracts and memorizes at far too high a resolution to be able to robustly respond to irrelevant variations in the stimuli – via unsupervised processing of that representation used to do the output classification we will generate ‘gists’.  The idea is to use the ‘gists’ of those representation vectors to provide a lower bit view of what is necessary to get an acceptable accuracy.  My idea for the How is that new ‘gists’ vocabulary ~ qualia can be used as a vocabulary for a simulation (either GANs or RL based) to complement the higher resolution current deep learning answers.  Then the challenge will be to appropriately blend the two.  I look forward to the discussion on this view of the what and the how.  The why now part of the how is centered around the spectacular recent breakthroughs in deep learning.

On the second topic, reviewing the material we covered this calendar year that should be considered for inclusion into the Kabrisky lecture series, I will briefly remind everyone of the major topics we hit early this calendar year that maybe need to be included in our Kabrisky lecture.

For example this year we covered the Deep Mind breakthrough in January.  We might go back over its implication and how it was accomplished.  This came up several times during the year so instead of sticking with the linear approach (being chronologically faithful) to reviewing we will attempt to hit all  the related topics we hit throughout the year – so on Deep mind we started with the Atari material:

Deep Mind article on Deep Reinforcement Learning.  arXiv:1312.5602v1 [cs.LG] 19 Dec 2013.  Playing Atari with Deep Reinforcement Learning:

 

Abstract:  We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.

Later in the year we hit the changes necessary for the AlphaGo effort:

http://www.bloomberg.com/news/articles/2016-01-27/google-computers-defeat-human-players-at-2-500-year-old-board-game

Google Computers Defeat Human Players at 2,500-Year-Old Board Game

The seemingly uncrackable Chinese game Go has finally met its match: a machine.

Jack Clark mappingbabel

January 27, 2016 — 1:00 PM EST

Computers have learned to master backgammon, chess, and Atari’s Breakout, but one game has always eluded them. It’s a Chinese board game called Go invented more than 2,500 years ago. The artificial-intelligence challenge has piqued the interest of researchers at Google and Facebook, and the search giant has recently made a breakthrough.

Google has developed the first AI software that learns to play Go and is able to beat some professional human players, according to an article to be published Wednesday in the science journal Nature. Google DeepMind, the London research group behind the project, is now getting the software ready for a competition in Seoul against the world’s best Go player in March.

The event harks back to the highly publicized chess match in 1996 when IBM’s Deep Blue computer defeated the world chess champion. However, Go is a much more complex game. It typically consists of a 19-by-19-square board, where players attempt to capture empty areas and surround an opponent’s pieces. Whereas chess offers some 20 possible choices per move, Go has about 200, said Demis Hassabis, co-founder of Google DeepMind. “There’s still a lot of uncertainty over this match, whether we win,” he said. IBM demonstrated the phenomenal processing power available to modern computers. DeepMind should highlight how these phenomenally powerful machines are beginning to think in a more human way.

Also from deep mind in this week’s QuEST news we provide a story that discusses a topic we’ve been pursuing – dreaming as part of the solution to more robust performance:

Google’s DeepMind AI gives robots the ability to dream

Following in the wake of recent neuroscientific discoveries revealing the importance of dreams for memory consolidation, Google’s AI company DeepMind is pioneering a new technology which allows robots to dream in order to improve their rate of learning.  Not surprisingly given the company behind the project, the substance of these AI dreams consists primarily of scenes from Atari Video games. DeepMind’s earliest success involved teaching AI to play ancient videos games like Breakout and Asteroids.  But the end game here is for robots to dream about much the same things humans do – challenging real world situations that play important roles in learning and memory formation.

To understand the importance of dreaming for robots, it’s useful to understand how dreams function in mammalian minds such as our own (assuming the ET readership doesn’t include any aliens eavesdropping on the tech journalism scene). One of the primary discoveries scientists made when seeking to understand the role of dreams from a neuroscientific perspective was that the content of dreams is  primarily negative or threatening.  Try keeping a dream journal for a month and you will likely find your dreams consist inordinately of threatening or awkward situations. It turns out the age old nightmare of turning up to school naked is the rule rather than the exception when it comes to dreams. Such inordinate negative content makes little sense until viewed through the lens of neuroscience. One of the leading theories from this fields posits that dreams strengthen the neuronal traces of recent events. It could be that negative or threatening feelings encountered in the dream help to lodge memories deeper into the brain, thereby enhancing memory formation.  DeepMind is using dreams in a parallel fashion, accelerating the rate at which an AI learns by focusing on the negative or challenging content of a situation within a game.

So what might a challenging situation look like for a robot? At the moment  the world’s most sophisticated AI’s are just cutting their teeth on more sophisticated video games like Starcraft II and Labyrinth, so a threatening situation might consist of a particularly challenging Boss opponent, or a tricky section of a maze. Rather than pointlessly rehearsing entire sections of the game that have little bearing on the player’s overall score, “dreams” allow the AI to highlight certain sections of the game that are especially challenging and repeat them ad nauseam until expertise is achieved.  Using this technique, the researchers at DeepMind were able to achieve an impressive 10x speed increase in the rate of learning.

A snapshot of the method published by the DeepMind researchers to enable AI “dreams”. Image courtesy of Deepmind.

So we want to hit all this material from the perspective of its implications in the ‘how’ for building a conscious computer.

Another topic we hit early in 2016 was deep compositional captioning:

I’ve been poking around in the DCC paper that Andres sent us the link to (arXiv:1511.05284v1 [cs.CV] 17 Nov 2015 )–

  • I had great hope for it to give me insight into our fundamental challenge – the unexpected query – and it could be they did but as far as I can currently tell (I intend to spend more time digging through it) – they point out that current caption systems just spit back out previously learned associations (image – caption pairs) – when you don’t have something in your training set (image caption pairs) that can account for the meaning of a test image or video snippet you lose – cause it will give you its best previously experienced linguistic expression from the image-caption pair data!

The major implication from this material is where the state of the art is on the unexpected query.

We also in feb hit Hypnosis:

This popular representation bears little resemblance to actual hypnotism, of course. In fact, modern understanding of hypnosis contradicts this conception on several key points. Subjects in a hypnotic trance are not slaves to their “masters” — they have absolute free will. And they’re not really in a semi-sleep state — they’re actuallyhyperattentive*** my suspicion is that this is really associated with the sensitivity to suggestions as if they are real sensory data and true – my hypothesis is that the hypnotist is providing input to the subject’s sys1 – facts as if they are true – then the subject forms a narrative to make them corroborated/confirms ***

 

A twist to maybe discuss this week:  ‘using knowledge/quest model for how hypnosis works as a unique twist to human computer collaboration’ – the idea is we’ve proposed QuEST agents could better be ‘wingman’ solutions since they will be constructed with two system approaches (subconscious and an artificial conscious) – the key to having them ‘hyperalign’ in both directions (to the human and the human to the computer) is to use the lessons from our view of hypnosis – this could overcome the current bandwidth limit where humans and computers interfaces are all designed to only work through conscious manipulation of the interfaces – the idea is to facilitate the human to be able to directly impact the computer’s subconscious as well as the conscious interface connection and similarly in reverse (this will be very controversial – to in some sense hypnotize the human partner to facilitate directly connecting to the human’s subconscious)

 

Another topic we hit early in the year was RNNs:

The Neural Network That Remembers

With short-term memory, recurrent neural networks gain some amazing abilities

Bottom’s Up: A standard feed-forward network has the input at the bottom. The base layer feeds into a hidden layer, which in turn feeds into the output.

 

Loop the Loop: A recurrent neural network includes connections between neurons in the hidden layer [yellow arrows], some of which feed back on themselves.

Time After Time: The added connections in the hidden layer link one time step with the next, which is seen more clearly when the network is “unfolded” in time.

 

Again we want to ensure we have captured the implications for the QuEST conscious computer.  That led us to:

In March we hit the dynamic memory networks of MetaMind:

The Dynamic Memory Network, out of MetaMind will be discussed.  Although we started this discussion two weeks ago – the importance of their effort warrants a more in depth consideration for its implications to QuEST.

http://www.nytimes.com/2016/03/07/technology/taking-baby-steps-toward-software-that-reasons-like-humans.html?_r=0

Taking Baby Steps Toward Software That Reasons Like Humans

Bits

By JOHN MARKOFF MARCH 6, 2016

Richard Socher, founder and chief executive of MetaMind, a start-up developing artificial intelligence software. Credit Jim Wilson/The New York Times

Richard Socher appeared nervous as he waited for his artificial intelligence program to answer a simple question: “Is the tennis player wearing a cap?”

The word “processing” lingered on his laptop’s display for what felt like an eternity. Then the program offered the answer a human might have given instantly: “Yes.”

Mr. Socher, who clenched his fist to celebrate his small victory, is the founder of one of a torrent of Silicon Valley start-ups intent on pushing variations of a new generation of pattern recognition software, which, when combined with increasingly vast sets of data, is revitalizing the field of artificial intelligence.

His company MetaMind, which is in crowded offices just off the Stanford University campus in Palo Alto, Calif., was founded in 2014 with $8 million in financial backing from Marc Benioff, chief executive of the business software company Salesforce, and the venture capitalist Vinod Khosla.

MetaMind is now focusing on one of the most daunting challenges facing A.I. software. Computers are already on their way to identifying objects in digital images or converting sounds uttered by human voices into natural language. But the field of artificial intelligence has largely stumbled in giving computers the ability to reason in ways that mimic human thought.

Now a variety of machine intelligence software approaches known as “deep learning” or “deep neural nets” are taking baby steps toward solving problems like a human.

On Sunday, MetaMind published a paper describing advances its researchers have made in creating software capable of answering questions about the contents of both textual documents and digital images.

The new research is intriguing because it indicates that steady progress is being made toward “conversational” agents that can interact with humans. The MetaMind results also underscore how far researchers have to go to match human capabilities.

Other groups have previously made progress on discrete problems, but generalized systems that approach human levels of understanding and reasoning have not been developed.

news-summary-35

Categories: Uncategorized

Weekly QuEST Discussion Topics and News, 4 Nov

November 3, 2016 Leave a comment

QuEST 4 Nov 2016

Next we want to continue discussing our main topic:  “QuEST for Consciousness”:  the purpose of the discussions over the last several weeks have been to generate a single slide and an elevator speech that captures the ‘what’ part of a pitch for initiating an effort to build a conscious computer – this week we will continue to discuss the ‘what’ – specifically this week we want to establish types of qualia and computing with qualia

All ‘conscious’ mental states involve qualia – we will argue that generating and computing with qualia will be the key break through in making emotionally intelligent machines (machines that can ‘feel’ and distinguish between a range of ‘feelings’ / ‘conscious experiences’ in their representation of the environment and themselves {part of the representation of the environment can include a representation of the ‘feelings/experiences’ of other agents}) –

This will be done in a dual process framework that integrates big-data approaches to capturing data level experiences and efficient representations to facilitate quick reflexive responses to stimuli that are close enough to prior experiences at the data level – and secondly by generating a qualia based representation that models our Theory of Consciousness (tenets) –

We argued last week that this vocabulary of qualia could be extracted from the ‘big-data’ analysis done in the subconscious processing – this week we need to address the types of concepts we need to represent in the qualia vocabulary –

To have the types of qualia discussion we need to remind everyone how we use that term – definitions are pretty worthless – but through providing examples we can come to an understanding of how we use that term – so discussions that focus on ‘what it is like to have a given experience’ can provide a framework to move forward with –

Then we can move to our Theory of consciousness – the 3 big tenets –  situation based / simulation / structurally coherent and the sub tenets – a discussion of what we mean by these terms will allow us to move forward to a discussion of how do current major thrusts in machine learning can be used and/or modified to engineer these ‘conscious computers’ –

To have the discussion on modern machine learning we will use three recent great examples – the first is a Darpa perspective on AI provided to us by the Director of DARPA I2O – John Launchbury – I had the pleasure of interacting with him in association with us both providing talks at a recent Jason’s meeting – John speaks to the waves of machine learning

The second perspective on modern machine learning is from our DARPA colleague Tran T. and is also a historical view of AI

The last perspective will follow the book the master algorithm by Pedro Domingos – in that work he parses the space into the five tribes of machine learning –

The goal of these discussions on machine learning will be to discuss where those representations are either consistent with our types of qualia tenets or they can be manipulated to a representation that is consistent AND then lead to the discussion of how the resulting representation can be used for inference – (of course there is the middle step which is how do they each currently generate a model for a given problem space)

  • In reality, three orthogonal problems arise:

–     • choosing a representation language,

–     • encoding a model in that language,

–     • performing inference on the model.

 

news-summary-34

Categories: Uncategorized

Weekly QuEST News and Discussion Topics, 28 Oct

October 27, 2016 Leave a comment

QuEST 28 Oct 2016

We want to start this week by reviewing a recent video at a deep learning training course hosted by several leaders including Andrew Ng from Baidu – some of the lessons he speaks to are great for those in the field – so we want to start this week discussing those general lessons.  You can view the video at https://youtu.be/F1ka6a13S9I

Next we want to return to our main topic:  “QuEST for Consciousness”:  the purpose of the discussions over the last several weeks have been to generate a single slide and an elevator speech that captures the ‘what’ part of a pitch for initiating an effort to build a conscious computer – this week we will continue to discuss the ‘what’ –

  • ‘What’ are we trying to do?
  • How do we capture in a single slide and an elevator pitch – what we mean when we say ‘QuEST for Consciousness’ is going to build a conscious computer?
  • I spent some time last week reminding all of the foundation – group intelligence is dominated by groups where the members have high Emotional Intelligence.  Therefore I contend the ‘what’ we are attempting is:
  • Answer: we are going to build an Emotionally Intelligent computer to serve as a ‘wingman’ decision aid / recommender system for its human team-mates.

–      By emotionally intelligent we are saying it will be sensitive to the human’s intent and take into consideration the human’s responses to the recommendations – and we are using the world ‘emotion’ in a very general manner to include human state sensing both of the conscious actions and the subconscious contributions to those actions.  Here emotion is the ‘conscious’ manifestation of subconscious calculations.  Those manifestations are used in the conscious deliberations leading to actions.  By designing computer systems that complement existing ‘big-data’ recommenders with a ‘conscious’ complementary set of deliberations we will make the human-machine group decisions more intelligent.

 

All ‘conscious’ mental states involve qualia ** by definition – qualia are the vocabulary of conscious thoughts**

  • Many define qualia purely in terms of sensory experience. We will argue that all conscious mental states that involve qualia – including those in our dreams.
  • For instance, everyday thoughts such as “that chair is orange” or “it’s often windy in Boston” also involve qualia just as sense perception does and are an attempt by the speaker to evoke in the listener qualia commensurate with what the speaker experiences when hearing/saying those words.  The words evoke qualia in the listener.

The QuEST position on Self was a real turning point – it is the quale evoked when the stimulus is the agent generating the qualia – it is no more mysterious than the red you consciously experience – or the qualia of thoughts in the listener when they hear the words ‘that chair is orange.’

I recall writing in the tenets a discussion about how we represent definitions of anything – for example in Second Look we never could capture in numbers an adequate definition of breast cancer – defining cancer in terms of feature definitions (size, opacity, texture, …) is very unappealing in the sense of the resulting requirement for gathering enough data to completely distinguish any cancer for any non-cancer in any woman –

 

we need a better representation or the perfect set of features or infinite data – all are impossible unless the problem is trivial which breast cancer is not – does consciousness provide a way around this issue?  Is this the answer to the why question we will have to answer?  What is it we hope to revolutionize with the building of a conscious computer?

 

news-summary-33

Categories: Uncategorized

The QuEST for Artificial General Intelligence for Big Data Analytics (Briefing Charts)

October 20, 2016 Leave a comment
Categories: Uncategorized

Weekly QuEST Discussion Topics and News, 21 Oct

October 20, 2016 Leave a comment

QuEST 21 Oct 2016

It is the Goal of the QuEST group to build a conscious computer (not to be confused with a computer that only has a ‘conscious representation’ – we believe have a computer that has both an intuition (big-data) and a conscious representation is the key – the first question we have to answer is ‘what is a conscious computer?’ ‘how does it differ from current big-data computers?’ – the purpose of the discussions over the last several weeks have been to eventually generate a single slide and an elevator speech that captures the ‘what’ – this week we will hear the cap view of the ‘what’ – all discussions are hopefully going to lead to the goal = defining the ‘what’ in a simple understandable form:

 

They all center around the cap assumption:  certain types of complex systems are conscious, and what type of consciousness (what it is like for that system to have an experience) they have depends exactly on the complexity of the systems

consciousness is the experiencing of qualia, ** the use of ‘experience’ here has to be considered carefully – qualia are what is attended to in the working memory – that attention to those aspects of the representation is what we term the ‘experience’ – consciousness is nothing but that – the generation of the working memory representation, with that representation having key characteristics (tenets – laws from our theory of consciousness), then the attention to aspects of that representation, the aspects of that representation that are being attended to while they are being attended to is what we call qualia **

  • A system must continue to experience qualia if it is to remain conscious; any periods during which no qualia are experienced are periods in which the system has lost consciousness.  ** in our world this just means when the system is no longer generating / attending to the working memory representation it is unconscious ** current ‘intelligent’ computers don’t generate a representation consistent with our laws of consciousness – thus are NOT conscious **

Chalmers:  … the best one can do … really all one can do is point to the phenomenon. [9, p. 230]  ** this is what we resort to in our presentations – we have you slap the person next to you or look at two ‘red’ squares – so we point to the experience – point to the phenomena ** but that is ok – by pointing to the phenomena all the QuEST researchers can get insight into characteristics of consciousness **

So for example here we get the listener to focus on the stimulus (getting stabbed) and then the experience – the pain – so all we can do is point to the phenomenon that is conscious experience – and the goal is to evoke in the listener an understanding of what/how we are using the term consciousness – in this case by drawing their attention to the stimulus-qualia gap **

  • But I just want to show what sort of things I’m talking about when I raise the topic of qualia, and that task doesn’t seem so onerous. ** I think the only hope we have is defining in terms of relationships to other qualia **
  • A quale is the particular way it seems to a person to see something, taste something, or get sensory input from any of his three other sensory modalities – ** or have a thought not just have the conscious experience associated with a sensing stimulus ** . Qualia are the raw feels associated with experiences; they are what make different experiences seem or feel different from one another. ** the stimulus quale gap is key – and keep in mind the stimulus can be internal – you can have a thought …. **

A quale is what it is like to undergo an experience. A quale is what gives an experience its subjective element. Qualia are thephenomenal contents of experiences. ** you are nothing more than your qualia – as you slip into some deranged state that is who you are – it is the ultimate biometric – far more than some physical characteristic – we need Quali-metrics – because it is through your thoughts you execute interactions with the world – thus what makes you turn to terrorism … **

  • QUEST CHALLENGE: NAGEL: devise a new method – an objective phenomenology not dependent on imagination or empathy (although wouldn’t capture everything – its goal would be to capture a description in part of the subjective character of experiences IN A FORM COPREHENSIBLE TO BEINGS INCAPaBLE OF HAVING THOSE EXPERIENCES (computers))
  • Come up with a means to capture the subjective character of an experience (say of critter 1) to provide to a critter (critter 2) to provide that critter (critter 2) with a better understanding of what it was like for the original critter (critter 1) to have that experience  ** the only hope you have is to find relationships that are similar between the critters – that is why language works – the goal of language is for one agent to communicate qualia hopefully evoking in the other agent a similar experience / set of qualia **
  • Be able to describe sonar to a human so they could have a better understanding of the possible subjective nature of being a bat  ** only hope we have is to relate to our sense of sound location mixed with sight to get more information about distance … **
  • Be able to describe to a person blind from birth what it is like to see
  • Intermodality approaches don’t work – ‘red is like the sound of a trumpet’
  • Should be based on structural features of perceptions (SOUNDS TO ME LIKE OUR TENETS) even though something will be left out
  • Can we relate to a blind person the ‘characteristics’ of vision along these axes and compare to a similar set of gists / links / … that the blind person uses to represent the same reality – does that provide the blind person some insight into the subjective representation of a sighted person?

 

All ‘conscious’ mental states involve qualia ** by definition **

  • Note that so far I have defined qualia purely in terms of sensory experience|all of the examples of qualia I have given are brought on by sense perception. However, I will eventually argue that all mental states that we would prephilosophically consider to be conscious (i.e., all of those states that are not deeply and permanently unconscious in some Freudian sense) involve qualia.
  • For instance, I claim (and will later demonstrate) that common, everyday thoughts such as \that chair is orange” or \it’s often windy in Boston” essentially involve qualia just as sense perception does. But for the sake of simplicity I now want to discuss only this thinner, perhaps less controversial notion of qualia.

Now let’s take the Cowell comments on Self:

  • Second, I will not tackle the topic of the self in any significant detail. Consciousness is often described as requiring a subject|sometimes called a \self” or \ego”|that bears conscious states.
  • While I agree that the notion of there being some entity which has or experiences conscious states is intuitively very appealing, there are a number of problems that arise with such a view.
  • To take just one example, it would seem to require that the self is independent of consciousness in some sense, and is capable of existing with no conscious states at all or perhaps even when disembodied.

This raises all sorts of questions and worries about the exact ontological status of such a self, which often lead in turn to vague and unsatisfying claims about the self being \spiritual” or \soul-like.”

The QuEST position on Self was a real turning point – it is the quale evoked when the stimulus is the agent generating the qualia – it is no more mysterious than the red you consciously experience

And if we “can make helpful observations about what consciousness is” – what are the implications of those observations to the current technology trends like virtual reality:

I recall writing  in the tenets a discussion about how we represent definitions of anything – for example in Second Look we never could capture in numbers an adequate definition of breast cancer – defining cancer in terms of feature definitions (size, opacity, texture, …) is very unappealing in the sense of the resulting requirement for gathering enough data to completely distinguish any cancer for any non-cancer in any woman –

 

we need a better representation or the perfect set of features or infinite data – all are impossible unless the problem is trivial which breast cancer is not – does consciousness provide a way around this issue?  Is this the answer to the why question we will have to answer?  What is it we hope to revolutionize with the building of a conscious computer?

news-summary-32

Categories: Uncategorized

Weekly QuEST Discussion Topics and News, 14 Sept

October 13, 2016 Leave a comment

We want to continue our discussion of consciousness – my apologies I have to cut this week’s QuEST meeting short – maybe ½ hour only.  Our colleague Mike Y will continue where he left off we have a couple more points to make then – cap will take the position –certain types of complex systems are conscious, and what type of consciousness they have depends exactly on the complexity of the systems – the current QuEST focus is building a conscious computer – not to be confused with an artificial human or even an artificial life system. 

We are approaching building that conscious computer by using the approach from Cowell:

Minds, Machines and Qualia: A Theory of Consciousness
by
Christopher Williams Cowell

news-summary-31

Categories: Uncategorized